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Abstract

Purpose: Next generation sequencing has implicated some risk variants for human spina bifida 

(SB), but the genome-wide contribution of structural variation to this complex genetic disorder 

remains largely unknown. We examined copy number variant (CNV) participation in the genetic 

architecture underlying SB risk.

Methods: A high-confidence ensemble approach to whole genome sequences (WGS) was 

benchmarked and employed for systematic detection of common and rare CNVs in two separate 

ancestry-matched SB case-control cohorts.

Results: SB cases were enriched with exon disruptive rare CNVs, 44% of which were under 10 

KB, in both ancestral populations (P=6.75×10-7; P=7.59×10-4). Genes containing these disruptive 

CNVs fall into molecular pathways, supporting a role for these genes in SB. Our results expand 

the catalog of variants and genes with potential contribution to genetic and gene-environment 

interactions that interfere with neurulation, useful for further functional characterization.

Conclusion: This study underscores the need for genome-wide investigation and extends our 

previous threshold model of exonic, single nucleotide variation toward human SB risk to include 

structural variation. Since WGS data affords detection of CNVs with greater resolution than 

microarray methods, our results have important implications toward a more comprehensive 

understanding of the genetic risk and mechanisms underlying neural tube defect pathogenesis.

INTRODUCTION

Neural tube defects (NTDs) are anomalies of the central nervous system (CNS) present at 

birth that manifest with varying subtypes and severity and are among the most common 

structural birth defects. In more severe NTD subtypes the rostral neural tube fails to close, 

exposing brain (anencephaly) or brain and cervical-thoracic spine (craniorachischisis), 

resulting in intrauterine or neonatal death. In contrast, spina bifida aperta (SB, 

myelomeningocele) is a neural tube closure defect most often confined to the caudal spine 

below the level of T10. With advances in surgical repair and management, the majority of 

spina bifida patients will live into adulthood, but will experience lifelong physical challenges 

including paralysis, associated hydrocephalus requiring CSF shunting, autonomic 

dysfunction, orthopedic issues and more. With heritability estimates as high as 70%1, NTDs 

are thought to arise through an interplay of multiple gene-gene interactions determining 

genetic predisposition and environmental factors that tip the balance toward failed 

neurulation2.

The successes of folic acid supplementation for prevention has led to an emphasis in genetic 

and epidemiological NTD research on the disease association with candidate genes involved 

in folate metabolic pathways. Moreover, it has prompted numerous studies in animals of 
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genes involved in one-carbon metabolism and their link with structural birth defects. In 

addition, genetically engineered animal models of NTD have revealed the importance to 

neurulation of signaling pathways such as Wnt / planar cell polarity (PCP)3, sonic hedgehog 

(Shh)4, and protein kinase A (PKA)5. Mouse models of NTDs have established more than 

250 genes whose variants predispose to NTD in the mouse, often showing incomplete 

penetrance that would suggest additional factors in the genetic background or fetal 

environment are required for NTD to be manifested6. These insights have spurred a number 

of candidate gene searches among affected patients and sometimes parents in an attempt to 

identify genetic variants that confer risk for developing an NTD. Nevertheless, there remains 

a translational challenge to reconcile mouse and human NTD data in order to pinpoint genes, 

pathways and eventually discern patterns of genetic variation that predispose risk in humans.

Despite years of clinical studies and investigations in animal models, the patterns of human 

genetic variation that predispose to NTD remain elusive, limiting our efforts to clearly define 

the genetic architecture underlying the etiology of NTDs. This may in part be attributed to 

the relatively small effect sizes of individual genes and the narrow focus of investigations on 

variation within protein coding regions of the genome. Whole genome sequencing (WGS) 

data coupled with recent advances in algorithmic detection of genomic variation offer 

opportunities to interrogate under-explored forms of potential NTD risk such as structural 

variants (SVs), whose effects on NTD risk are not well understood. SVs have been shown to 

alter the structure and dosage of many genes and rare SVs may exert stronger effects on gene 

expression compared to rare single nucleotide polymorphisms (SNPs). Rare SVs may also 

ablate exons and create gene fusions, affecting downstream functionality independent from 

gene expression. Efforts thus far to interrogate SVs and CNVs in NTD cases have largely 

relied on array-based platforms or whole exome sequencing. Using those tools, deletions in 

several genes involving cilia and proteoglycans have been implicated in NTD risk7. 

Therefore, we hypothesize that novel NTD risk genes and mechanistic insight will be gained 

from a comprehensive genome-wide evaluation of CNVs from WGS data.

We report our first in a series of structural variant analyses of WGS data from two separate 

ancestry-matched human SB case-control cohorts, focusing on the landscape of high-

confidence, likely gene disrupting CNVs. For complex diseases including NTDs, it is 

important to account for population genetic differences to avoid confounding effects of 

ancestral variation; thus, we sought to maintain a representative balance of population 

admixtures in each of our cohorts. In this work, we benchmarked an ensemble of 

computational tools for CNV detection that was then employed to characterize both common 

and rare CNVs in well-defined human SB cohorts with the objective of further defining 

genomic risk contribution in these CNS anomalies.

MATERIALS AND METHODS

Study cohorts and whole genome sequencing

SB subjects who displayed non-syndromic myelomeningocele were selected as cases for this 

study. Of the 140 SB cases, 67 were collected in the US and 73 from Qatar. The US cohort 

included an additional 46 unrelated controls with another 30 control subjects obtained from 

the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium8. These additional 30 
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germline samples were analyzed and confirmed to maintain similar admixtures as the US 

cases. The Qatar cohort included an additional 107 unrelated individuals from the same 

geographic region and who, again, displayed a population admixture similar to cases. In all, 

the US cohort comprised 143 individuals and the Qatar cohort included 180 individuals. 

Altogether, 323 anonymized subjects were included in our study encompassing the two 

populations. The presence of Y-chromosome markers in individuals was used to determine 

sex ratios in our case-control cohorts. The male:female ratio within in our case group is 0.69 

and is 0.68 within our control group, indicating no sex bias in our study.

Genomic DNA was extracted from de-identified infant blood spot cards obtained from the 

California Genetic Diseases Screening Program as well as from venipuncture samples 

collected from subjects participating in the national Spina Bifida Clinic at Hamad Medical 

Corporation in Qatar. DNA extraction was done using the Puregene DNA Extraction Kit 

(Qiagen, Valencia, California) and all DNA samples were submitted for whole genome 

sequencing using an Illumina HiSeq2500 platform to yield short insert paired end 2x100bp 

reads. Ancestry-aware study cohorts were obtained by extracting relevant loci via PLINK 

(v.1.9)9 to calculate specific admixture components, and each cohort constituted a 

representative admixture balance for both cases and controls.

Alignment, SNV Calling and pre-processing

FASTQ reads were aligned to reference genome hg38 using BWA10. After reads were sorted 

and duplicates were removed, SNV and InDel calling was performed with GATK4 and joint 

genotyping was carried out on the whole cohort according to GATK Best Practices 

recommendations11. Only variants with a “PASS” in the filter column were retained. 

SAMtools12 was used on individual bam files to run quality control measures and to assess 

read depth uniformity. Read depth statistics were also employed in SAMtools or GATK. The 

median insert size for samples included in the analysis was 413bp.

CNV and MEI detection

To maximize high-quality CNV detection from short read WGS data, we deployed 

numerous callers known to perform well individually and integrated their results into a 

consensus framework that we optimized and packaged as an ensemble approach 

(Supplementary Figure 1). Manta (v.1.4)13, Delly (v.0.7.7)14, Lumpy (v.0.2.13)15, CNVnator 

(v.0.3.3)16 and ERDS (v.1.1)17 were each employed on individual sample bam files. ERDS 

also used SNV calls as input for each individual to refine CNV breakpoints. The CNVs 

detected using the read depth tools (CNVnator and ERDS) were only kept if there was an 

agreement between calls from each tool, which we defined as those CNVs that are of the 

same type and that have breakpoints located within close proximity of each other (<2 kb for 

CNVS < 100kb; <5kb for CNVS > 100kb). Only calls ≥ 1kb were retained given the limited 

ability of these read depth methods to capture smaller CNVs. We added to this set of CNVs 

the consensus calls made from the tools that also utilize split-read and read pair signatures 

(Manta, Lumpy and Delly). A consensus call entailed two out of these three tools to agree on 

the CNV type and that individual breakpoints are located within 1 kb of each other. Only 

calls ≥ 300bp and ≤ 100kb were retained, since CNVs outside of this range are prone to 
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yield false positives. MELT (v. 2.0.5)18 was used for detection of mobile element insertions, 

namely Alu, SVA and L1 elements.

To ensure against software performance dependencies across study cohorts, our ensemble 

CNV detection approach was implemented as a Docker image and run on individual 

subjects, generating a single consensus VCF for each sample. Sample VCFs were merged 

across all samples via SURVIVOR19 resulting in a non-redundant set of high-quality 

candidate CNVs.

SV annotation and filtering repetitive and low complexity regions

Each CNV with any predicted overlap with any coding sequencing of the canonical 

transcript of 20,246 protein-coding genes was annotated as coding. Deletions were 

considered loss-of-function if they overlapped any coding sequence and duplications were 

considered loss-of-function if they affected an exon without extending outside the transcript 

boundaries. Duplications were considered to be copy gain if they spanned the entirety of a 

transcript. AnnotSV (v.2.0)20 was used for annotation of VCF using reference genome hg38. 

We filtered those CNVs from our call sets that had > 70% reciprocal overlap with repetitive 

and low-complexity regions, which may confound genomic variant detection. As a 

comprehensive set of repetitive and low-complexity regions, we combined four datasets: (1) 

the set of assembly gaps defined by UCSC, including centromeres, telomeres, constitutive 

heterochromatin domains, gaps between or within clones and contigs, and the repeat-

dominated short arms of chromosomes 13, 14, 15, 21, and 22; (2) the UCSC list of 

segmental duplications; (3) the pseudo-autosomal regions of the sex chromosomes; and (4) 

repeat regions as defined by RepeatMasker21.

Benchmarking and CNV simulation analyses

In order to select the optimal combination of software and parameters included in our 

ensemble CNV approach, we conducted a number of benchmarking analyses deploying 

numerous detection algorithms on both real and simulated genomes. We utilized the well 

characterized HG002 genome for benchmarking deletion calls obtained from the Genome in 

a Bottle (GIAB) consortium30, which provides Tier 1 benchmark regions of high-quality 

deletions that we utilized as our ground truth data set. For our simulation data, we used 

RSVsim to simulate deletions and duplications of a range of sizes at various genomic 

coordinates. Wgsim in the SAMtools package was used to create comparable whole genome 

sequencing reads similar to our study cohorts for further benchmarking and analysis. For 

sensitivity and precision evaluations, we used Truvari for HG002 deletion benchmarking and 

in-house scripts for accuracy metrics on simulated data.

Population genomic databases and BAM confirmation

We utilized the following population reference databases to extract population allele 

frequencies for our detected CNVs: 1000 Genomes Project22, Database of Genomic 

Variants23, gnomAD-SV24. If the coordinates for a given population reference were relative 

to reference assembly GRCh37/h19, then they were converted using the University of 

California Santa Cruz (UCSC) Batch Coordinate Conversion (LiftOver) tool.
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To manually assess and validate rare coding CNVs, Integrative Genomics Viewer25 and 

Samplot26 was used to visually compare the read depth of the CNV with that of the 

surrounding regions. This manual curation entailed examining deviations in read depth 

corresponding to the predicted change in copy number; that is a 50% reduction for a 

heterozygous deletion or a 50% increase for a heterozygous duplication. Predicted CNVs 

were required to have unambiguous start and end breakpoints, which was refined using split-

read and/or read pair information.

Pathway and Statistical Analyses

Ingenuity Pathway Analysis (IPA), Webgestalt27 and GeneAnalytics28 were used to 

investigate the genes affected by rare coding CNVs and both cases and controls. We utilized 

the IPA software to identify the top canonical pathways associated with our dataset, which 

consisted of the genes impacted by rare coding CNVs in our SB cases. We also conducted a 

pathway overrepresentation analysis with the KEGG functional pathway database, 

considering only protein-coding genes perturbed by rare CNVs since our aim was to assess 

the impact of coding CNVs. For the burden analyses, we applied two-sided Wilcoxon rank-

sum tests to analyze the distributions of common and rare CNVs as well as MEIs in our SB 

cohorts. Significance of differences between cases and controls in mean values for the 

number of rare coding CNVs per genome were assessed in each population cohort using 

two-tailed Student t-tests.

Real-time quantitative PCR

Select rare coding CNVs identified in our cohorts were validated using real-time quantitative 

PCR in samples for which DNA remained available after whole genome sequencing. DNA 

from four separate individuals that harbored a rare coding CNV was amplified using primers 

designed to hybridize in the region containing the putative CNV. Fold changes of expression 

were calculated and compared to the average value of three control samples, which 

contained two copies of the gene-specific region in which primers were designed. All 

reactions were performed in technical triplicates and ß-actin was used as an internal control. 

Fold changes of expression were calculated using the 2−ΔΔCT method and the gene-specific 

primers used for four CNVs are listed in Supplementary Table 2.

RESULTS

Cohort Characteristics and CNV Workflow

Two separate ancestry-matched cohorts (US and Qatar) were subjected to whole genome 

sequencing and were analyzed in this study comprising a total of 323 subjects. The US 

cohort included 67 cases and 76 controls and the Qatar cohort included 73 cases and 107 

controls. Cases in each cohort had a clinical diagnosis of non-syndromic SB and controls 

were balanced with similar ancestry admixture components as the cases in each study 

cohort. Principal components analysis (PCA) of the population admixtures for each cohort 

show that the cases and controls are comprised of similar ancestral backgrounds (Figure 1a).

We devised an optimized methodology for CNV detection featuring a consensus strategy 

that utilizes five CNV / SV callers as well as input from SNV detection for call refinement. 
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This ensemble approach leveraged multiple genomic signatures into a joint consensus 

integrative framework (Supplementary Figure 1). The approach employed a combination of 

read depth callers that performed among the best with regard to accuracy metrics in 

benchmarking studies and our own analyses29. Our approach also incorporated split read and 

discordant read pair evidence from several tools in order to yield high quality deletions and 

duplications >300 base pairs (bp). As part of initial analyses, our method was benchmarked 

against the well-characterized HG002 genome from the GIAB consortium30 yielding an F1-

measure=82.53 in calling deletions. Since this benchmarking data set does not include 

tandem duplications or copy number gains, results were further refined and tested on 

simulated genomes with 30X coverage harboring a number of duplications of various sizes. 

These initial benchmarking efforts led to our goal of utilizing an ensemble approach for 

CNV detection that performs at an optimized balance of sensitivity and precision compared 

to other combinations of callers and tested parameters (Supplementary Figure 2).

Detection of Common and Rare Coding CNVs

Our ensemble CNV approach detected a mean of 2389 deletions and 692 duplications per 

genome with only slightly more CNVs in the Qatar cohort, consistent with similar 

observations in population substructures including African ancestry (Figure 2a). Although 

CNV sizes spanned from several hundred bp to several megabases (Mb) in size, no 

statistically significant difference in the CNV size distribution was seen between cases and 

controls (P=0.548) (Figure 2d). In addition to our CNV analyses, we deployed a 

computational pipeline in a subset of our NTD cases and controls to analyze and compare 

the distributions of mobile element insertions (MEIs). Aside from encompassing over 50% 

of human genomes, genomic variation caused by Alu, SVA and LINE-1 (L1) elements are 

associated with risks for multiple human diseases31. We investigated these abundant forms 

of genomic variation in order to ascertain whether they contribute to NTD cases 

disproportionately more than in controls. Finding no significant difference in the distribution 

of the number of MEIs between our SB cases and controls (P=0.491), our data did not 

support a role of mobile elements in SB (Supplementary Figure 3).

We sought to identify CNVs with greatest potential to disrupt gene function and so 

contribute to NTD pathophysiology. Therefore, our analyses focused on coding CNVs, 

which we defined as those variants that overlap a coding exonic region by at least one 

nucleotide. We analyzed common and rare CNVs separately under the assumption that while 

common CNVs may modify genetic risk, rare CNVs are under more selective pressure and 

are thus inherently more deleterious. Among common coding CNVs (>1% minor allele 

frequency (MAF) in population genomic databases), we observed no significant difference 

between cases and controls in our two cohorts (Figure 3a, 3c). In contrast, among the rare 

coding CNVs, which we defined as those <0.1% MAF, we observed a statistically 

significant enrichment in cases compared to controls in both the US cohort and the Qatar 

cohort (P=7.59×10-4 and P=6.75×10-7, respectively) (Figure 3b, 3d). As with the common 

coding CNVs, variant size was not a significant factor between cases and controls for the 

rare coding CNVs (P=0.917), including when we stratified by each cohort (Qatar: P=0.914; 

US: P=0.652). Moreover, the distributions for the coding CNVs that were within the 0.1-1% 

MAF range did not reach significance in either cohort (Qatar: P=0.182; US: P=0.234). More 
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CNVs in the Qatar SB case-control cohort were classified as rare compared to the US SB 

case-control cohort, presumably due to less Middle Eastern representation in existing 

population databases. This, however, does not alter the significance of the burden analysis as 

each case-control comparison was ancestry matched.

Rare Coding CNVs and Potential Functional Significance

Chromosomal locations of rare CNVs seen in SB cases as well as size breakdowns of rare 

coding CNVs in our cohort are shown in Figure 4. Slightly more than half of the rare coding 

CNVs detected were gene disrupting deletions compared to duplications (52.75% vs 

47.75%), which was true for both cohorts (Supplementary Figure 4). The mean number of 

genes per genome that were disrupted by rare coding CNVs was significantly higher in SB 

cases relative to controls in both cohorts (P < 0.01) (Figure 4c). The genes affected by rare 

CNVs in our human SB cases were subjected to pathway analysis using IPA software and, in 

both cohorts, defined several canonical signaling pathways associated with NTDs, including 

retinoic acid and protein kinase A (PKA) signaling, and, in the US cohort, WNT/PCP 

pathways (Figure 5a). However, these pathways did not reach statistical significance after 

correction for multiple hypothesis testing. Taking another approach, over-representation of 

genes perturbed by rare coding CNVs in KEGG pathways did suggest potential disruption 

for cAMP signaling (P=1.18×10-3), though at a relaxed false discovery rate (FDR) of 0.176 

(Supplementary Figure 5).

Within metabolic pathways, we found rare coding CNVs in genes serving several cellular 

and mitochondrial processes, including choline transport and catabolism, which are closely 

associated with NTD formation (Figure 5b). Choline’s oxidation to betaine within the 

mitochondria provides a link to folate-dependent, one-carbon metabolism, suggesting that 

the observed gene disrupting variants are likely to contribute to SB risk. For example, 

SLC44A2 and SLC44A3 belong to the SLC44 family of transporters that exhibit choline 

transmembrane transporter activity. BHMT2, which has been associated with NTDs32, 

functions as a methyl transferase to catalyze the transfer of a methyl group from betaine to 

homocysteine. Homocysteine is an intermediate of methionine metabolism and has also been 

linked with NTD risk in a number of studies33. DMGDH is directly involved in the 

catabolism of choline to form sarcosine and is an essential enzyme in the glycine cleavage 

system, an important mitochondrial process known to harbor genetic risk variants for SB34. 

The visual representations of the CNVs we highlight in the metabolic pathway in Figure 5b 

are also included as Supplementary Figure 6 to aid in clearer inspection of the reads near the 

breakpoints of the CNVs. These visualizations display consistent genomic read signatures 

for each of these CNVs, and was part of the manual curation and validation process. 

Additional potentially SB-relevant rare CNVs that were detected only in cases are listed in 

Supplementary Table 1. This includes partial duplications we identified in SB cases 

impacting PARD3, an established NTD risk gene35 that directs polarized cell growth and 

affects asymmetric division, as well as VAV2, which has several roles in actin dynamics and 

cytoskeletal remodeling. These cell polarity and cytoskeletal processes are increasingly 

associated with NTD risk and have led to the discovery of additional novel candidate 

genes36. For the samples harboring relevant CNVs in which DNA remained available, qPCR 

was performed to experimentally validate our in silico findings and we include examples as 
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Supplementary Figure 7 (primer designs provided in Supplementary Table 2). Finally, 

Supplementary Table 3 shows the positions of qualifying rare exon disruptive CNVs that fell 

within IPA-defined signaling pathways in both Qatar and US cohorts and overlap those CNV 

regions previously identified41 as having an impact on human neurodevelopment. Five of the 

CNVs so identified in our study overlapped CNVs associated with autism spectrum disorder 

(ASD), attention deficit hyperactivity disorder (ADHD), obsessive compulsive disorder 

(OCD), or schizophrenia and were considered by those investigators to be clinically relevant 

according to American College of Medical Genetics (ACMG) guidelines.

DISCUSSION

Here we report a systematic interrogation of the CNV landscape in human SB and find an 

increased burden of rare CNVs directly affecting coding nucleotides. Integrative CNV 

pipelines from WGS data provide better resolution for variant detection over other 

conventional methods including array comparative genomic hybridization (aCGH) and 

whole exome sequencing (WES). In particular, 44% of the rare coding CNVs in our cohorts 

were less than 10kb in size, and many would have gone undetected using array-based or 

WES assays. The ensemble approach used here for CNV discovery in SB cases detected rare 

CNVs disrupting genes not previously associated with SB, but that participate in pathways 

of biological significance for neurulation. Moreover, the observation of rare CNVs in some 

known NTD risk genes and pathways, including one-carbon metabolism, reinforces the 

validity of this strategy.

Digenic variants have been observed in a number of mouse models of NTDs37 as well as in 

human studies, suggesting synergistic deleterious effects of variants in genes involved in 

folate metabolism38 or in PCP component genes39. While larger cohorts will be needed to 

reach statistical power necessary to pinpoint specific gene combinations indicative of 

individual risk, an oligogenic or polygenic model of SB risk is gaining traction and should 

be considered when evaluating genomic contribution. Indeed, we previously reported 

evidence using predicted deleterious exonic SNPs genome-wide to propose an omnigenic 

model of NTD risk. This threshold model of NTD risk was based on accumulation of 

singleton loss-of-function variants (SLoFVs), regardless of the genes harboring these 

variants40. In the current study, demonstration of the enrichment of rare gene disrupting 

CNVs in cases supports extending this threshold burden model of SB risk to include these 

SVs. That the burden of rare coding CNVs is present in both SB cohorts interrogated in this 

study supports the notion that our results are not due to effects of population stratification 

that could confound the interpretation of rare CNVs.

The overlap of the rare gene disrupting CNVs identified here contributes to a resource that 

may one day enhance clinical utility as it may soon be possible to examine the WGS of an 

infant with SB for prognostic indicators. For example, SB individuals with rare CNVs 

disrupting genes previously associated with neurodevelopmental disorders may alert to the 

need for early and vigorous intervention to optimize cognitive development and 

communication skills in addition to physical therapy. There is much more to be explored, as 

our high-confidence detection approach to identify rare CNVs using short-read WGS data 

almost certainly under-estimates the contribution of structural genome variation to SB risk. 
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In the future, multi-platform approaches and integration of long-read sequencing technology 

promise to enable detection of more SVs per genome. Clearly, SVs, including CNVs, are an 

understudied form of genomic variation in SB that warrants further investigation.

Our analyses of the CNV landscape in our SB cohorts underscore that candidate gene 

approaches limited to exons do not capture the full scope of genomic variation contributing 

to risk. Functional experiments will ultimately be critical for vetting genomic variants as 

they relate to NTD predisposition. Nevertheless, interrogating CNVs genome-wide expands 

the repertoire in SB research of variants and genes with potential to contribute to genetic and 

gene-environment interactions that interfere with neurulation. Evidence is accumulating to 

support the view that threshold burden models of SB pathogenesis and WGS analyses will 

achieve a more thorough characterization of the genetic architecture of NTDs.
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Figure 1. Spina bifida cohorts and analytical workflow.
(a) Two first principal components (PCs) from population admixture data of the individuals 

in the study colored by cohort and case status. (b) Study design and approach for high-

confidence CNV detection in reliable genomic regions using whole genome sequencing 

data. RD=read depth; SR=split-read; PE=paired end.
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Figure 2. Copy Number Variation Call Set.
(a) Total ascertained CNVs per individual in the respective cohorts (purple=deletion; 

blue=duplication). All samples included for common and rare variant analyses exhibited 

comparable read depth and insert size profiles. (b) Circos plot representing small (<10kb) 

and large (>300kb) CNVs observed in our cohorts (red=deletions under 10kb; blue= 

duplications under 10kb; green=deletions over 300kb; yellow=duplications over 300kb). (c-

d) CNV size distributions of all deletions or duplications is nearly identical between cases 

and controls in (c) the Qatar cohort or (d) the US cohort.
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Figure 3. Burden of coding CNVs in SB cases vs controls.
(a,b) Relative distributions of common and rare coding CNVs in the Qatar case-control 

cohort. (a) The frequency distribution of common coding CNVs does not significantly differ 

between cases and controls (P=0.28), (b) in contrast, a significant enrichment of rare coding 

CNVs is observed in cases compared to controls (P=6.75×10-7). (c-d) Common and rare 

coding CNV case-control comparison in the US cohort. (c) Common CNV per genome 

distributions do not significantly differ in cases vs. controls (P=0.34), (d) However, a 

significant enrichment of rare coding CNVs is found in cases compared to controls in this 

group (P=7.59×10-4).
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Figure 4. Characterization of detected rare coding CNVs by locus, size and genic content.
(a) Chromosomal location of rare coding CNVs found in SB cases shows broad distribution 

across the genome. (b) Size breakdown of the rare coding CNV call set in SB cases. 

Observed rare coding CNVs from both cohorts are categorized into six bins corresponding 

to the detected CNV size. (c) Comparison within cohorts of the mean value of genes affected 

by rare coding CNVs per genome in cases compared to controls **p<0.01; ****p<0.0001.

Wolujewicz et al. Page 16

Genet Med. Author manuscript; available in PMC 2021 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Rare CNVs in SB cases participate in SB relevant pathways and affect various aspects 
of one-carbon metabolism.
(a) Signaling pathways enriched in cases by gene disrupting, rare coding CNVs detected in 

the US and Qatar cohorts. Shown are Ingenuity Pathway Analysis (IPA) plots. Several of 

these pathways in both cohorts emerged as enriched in SB cases. PCP=planar cell polarity; 

RAR=retinoic acid receptor. (b) Metabolic processes of choline transport and one-carbon 

metabolism that are disrupted by rare coding CNVs found in SB cases are labeled 1-6. 

Purple=deletions; blue=duplications. Their corresponding CNVs are represented in the 

lower panel in (b) using the Integrative Genomics Viewer (IGV) (for CNV 1-5) and samplot 

(for CNV 6). Chol=choline; Hcy=homocysteine; Gly=glycine.
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